Papers
  1. N. M. Ercolani and V. U. Pierce, The continuum limit of Toda lattice for random matrices with odd weights, accepted in Commun. Math. Sci. (2011)
  2. M. Bertola, R. Buckingham, S.-Y. Lee, and V. U. Pierce, Spectra of Random Hermitian Matrices with a Small-Rank External Source: The critical and near-critical regimes, submitted to Duke Math. J. (2011)
  3. M. Bertola, R. Buckingham, S.-Y. Lee, and V. U. Pierce, Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes, submitted to {\it Commun. Math. Phys.} (2010)
  4. Y. Kodama and V. U. Pierce, The Pfaff lattice on symplectic matrices, J. Phys. A. 43 (2010)
  5. Y. Kodama and V. U. Pierce, Combinatorics of dispersionless integrable systems and universality in random matrix theory, Commun. Math. Phys. 292 (2009) 529-568.
  6. W. Bryc and V. U. Pierce, Duality of real and quaternionic random matrices, Electron. J. Probab. 14 (2009) 452-476.
  7. T. Grava, V. U. Pierce, and F.-R. Tian, Initial value problem of the Whitham equations for the Camassa-Holm equation. Physica D: Nonlinear Phenomena, 238 (2009) 55-66.
  8. Y. Kodama, V. U. Pierce, and F.-R. Tian, On the Whitham equations for the defocusing complex modified KdV equation, SIAM J. Math. Anal. 41 (2008) 26-58.
  9. V. U. Pierce, A Riemann-Hilbert problem for skew-orthogonal polynomials, J. Comp. Appl. Math. 215 (2008) 230-241.
  10. N. M. Ercolani, K. T.-R. McLaughlin, and V. U. Pierce, Random matrices, graphical enumeration and the continuum limit of the Toda lattices, Comm. Math. Phys. 278 (2008) 31-81.
  11. Y. Kodama and V. U. Pierce, Geometry of the Pfaff lattices, IMRN, 23 (2007).
  12. V. U. Pierce and F.-R. Tian, Self-similar solutions of the non-strictly hyperbolic Whitham equations for the KdV hierarchy, Dynamics of PDE, 4 (2007) 263-282.
  13. V. U. Pierce and F.-R. Tian, Large time behavior of the zero dispersion limit of the fifth order KdV equation, Dynamics of PDE, 4, (2007) 87-109.
  14. V. U. Pierce and F.-R. Tian, Self-Similar solutions of the non-strictly hyperbolic Whitham equations, Comm. Math. Sci. 4 (2006) 799-822.
  15. V. U. Pierce, Determining the potential of a Sturm-Liouville operator from its Dirichlet and Neumann spectra, Pacific J. Math., 204 (2002) 497-509.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License