Papers
- N. M. Ercolani and V. U. Pierce, The continuum limit of Toda lattice for random matrices with odd weights, accepted in Commun. Math. Sci. (2011)
- M. Bertola, R. Buckingham, S.-Y. Lee, and V. U. Pierce, Spectra of Random Hermitian Matrices with a Small-Rank External Source: The critical and near-critical regimes, submitted to Duke Math. J. (2011)
- M. Bertola, R. Buckingham, S.-Y. Lee, and V. U. Pierce, Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes, submitted to {\it Commun. Math. Phys.} (2010)
- Y. Kodama and V. U. Pierce, The Pfaff lattice on symplectic matrices, J. Phys. A. 43 (2010)
- Y. Kodama and V. U. Pierce, Combinatorics of dispersionless integrable systems and universality in random matrix theory, Commun. Math. Phys. 292 (2009) 529-568.
- W. Bryc and V. U. Pierce, Duality of real and quaternionic random matrices, Electron. J. Probab. 14 (2009) 452-476.
- T. Grava, V. U. Pierce, and F.-R. Tian, Initial value problem of the Whitham equations for the Camassa-Holm equation. Physica D: Nonlinear Phenomena, 238 (2009) 55-66.
- Y. Kodama, V. U. Pierce, and F.-R. Tian, On the Whitham equations for the defocusing complex modified KdV equation, SIAM J. Math. Anal. 41 (2008) 26-58.
- V. U. Pierce, A Riemann-Hilbert problem for skew-orthogonal polynomials, J. Comp. Appl. Math. 215 (2008) 230-241.
- N. M. Ercolani, K. T.-R. McLaughlin, and V. U. Pierce, Random matrices, graphical enumeration and the continuum limit of the Toda lattices, Comm. Math. Phys. 278 (2008) 31-81.
- Y. Kodama and V. U. Pierce, Geometry of the Pfaff lattices, IMRN, 23 (2007).
- V. U. Pierce and F.-R. Tian, Self-similar solutions of the non-strictly hyperbolic Whitham equations for the KdV hierarchy, Dynamics of PDE, 4 (2007) 263-282.
- V. U. Pierce and F.-R. Tian, Large time behavior of the zero dispersion limit of the fifth order KdV equation, Dynamics of PDE, 4, (2007) 87-109.
- V. U. Pierce and F.-R. Tian, Self-Similar solutions of the non-strictly hyperbolic Whitham equations, Comm. Math. Sci. 4 (2006) 799-822.
- V. U. Pierce, Determining the potential of a Sturm-Liouville operator from its Dirichlet and Neumann spectra, Pacific J. Math., 204 (2002) 497-509.
page revision: 7, last edited: 11 Aug 2011 02:19